

Deep Learning for Accelerating High Energy Physics Simulations

DPG-Frühjahrstagung 2021

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Vikram Saletore [Intel], Hans Pabst [Intel], Adel Chaibi [Intel], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

18.03.2021

Calorimeter Simulations

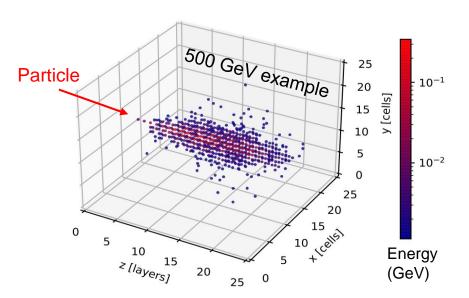
- Calorimeter detectors measure the energy of particles
- Calorimeter simulations are based on Geant4
- Geant4 use about 50% of the resources of the worldwide LHC grid
- LHC high luminosity phase requires 100 times more simulated data*
- → Develop a new approach which occupies less resources
- → Employ deep learning

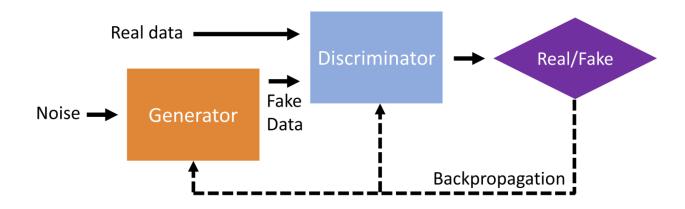
*A Roadmap for HEP Software and Computing R&D for the 2020s https://doi.org/10.1007/s41781-018-0018-8

Generative Adversarial Networks

3DGAN

- Train two networks (Generator & Discriminator) in a minmax game
- We want to further decrease the computational resources

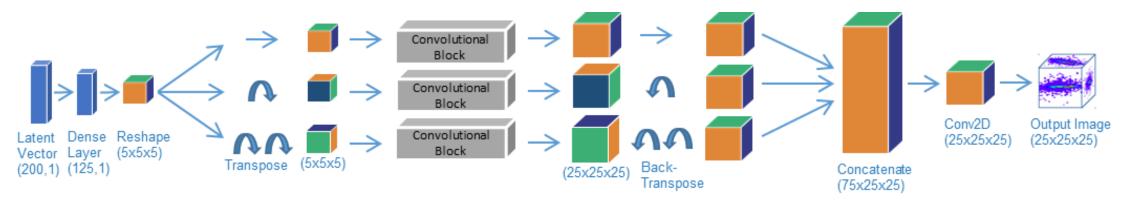




- 200 000 3D shower images with granularity 25x25x25
- Energies between 2-500 GeV

New Conv2D Generator Architecture

- Conv3D layers are computational demanding
- Conv3D layers are not yet supported in less than 32bit precision
 - → Creating neural network consisting only of Conv2D layers



→ Solve 3D image problems with only 2D convolutional layers

Computational Evaluation

Model:	Number of Parameters	Inference Time [s]	GPU Utilization [%]	Training Time per Epoch [min]
Conv3D	965 000	16.8	93.15	258
Conv2D	2 055 000	4.9 (3.4x faster)	21.75 (4.3x less)	40 (6.45x faster)

- Conv2D model has more than double as much parameters as the Conv3D model and inference is much faster
- Conv2D model has lower inference time and lower GPU utilization
 - → Potential to increase speed up to a factor of 12x when using multiple streams

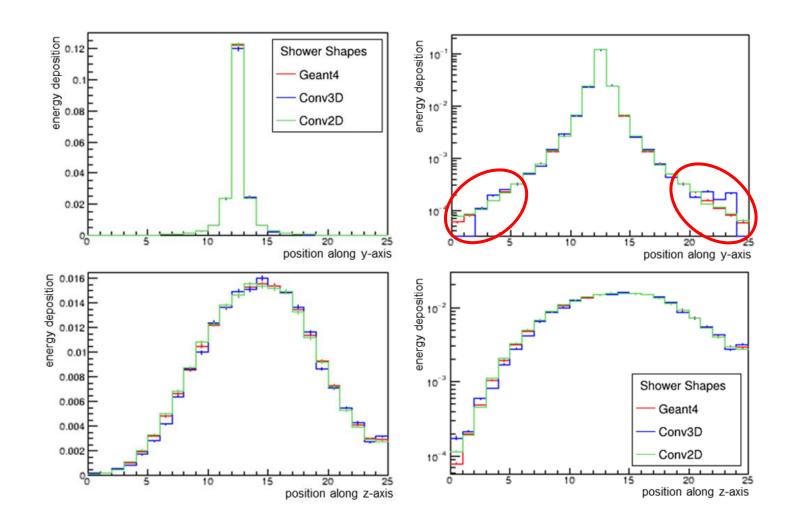
Physics Evaluation

Shower Shapes

 Mean Squared Error (MSE) between GAN and validation data:

Model	MSE (Lower is better)	4
Conv3D	0.048	
Conv2D	0.027	

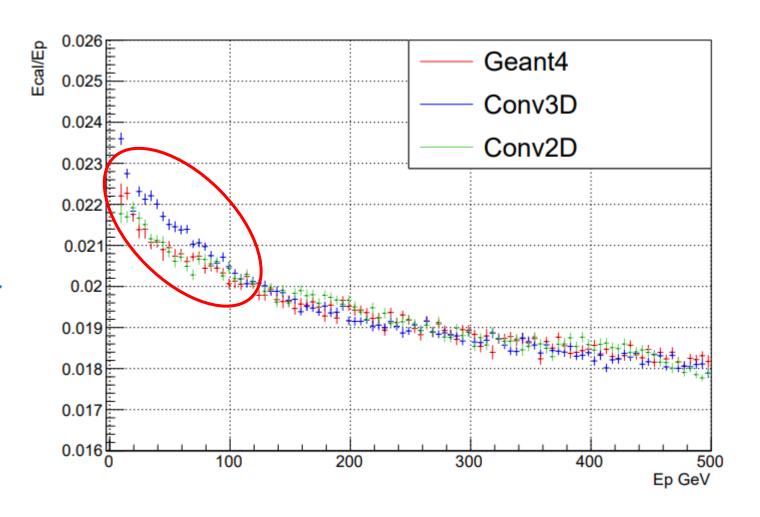
- Projection of the shower along the different axis
 - Conv2D performs better along the tails



Physics Evaluation

Sampling Fraction

- Ratio between the total measured energy ECAL and the initial particle energy E_p
- Conv2D performs better for energies below 100 GeV

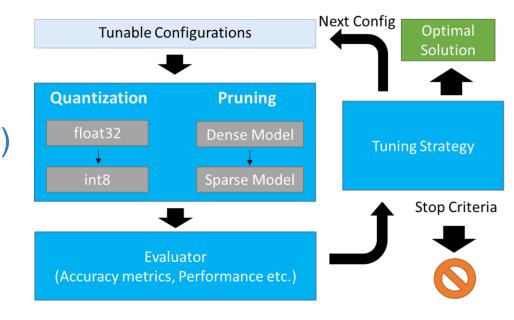


Reduced Precision Computing

Reduced Precision Computing

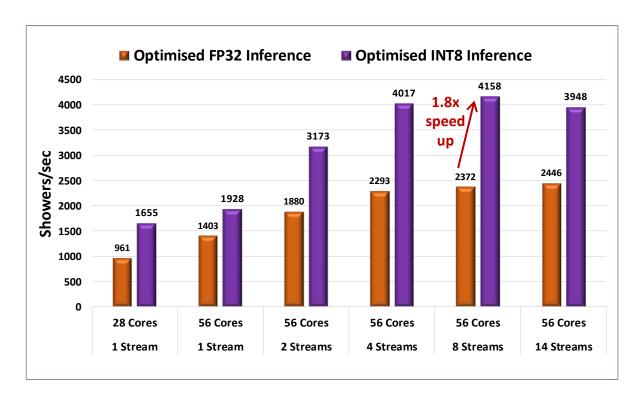
- Quantization: Converting a number from a higher to a lower format
 - E.g. from float32 to int8

- Quantization Tool: Intel Low Precision Optimization Tool (iLoT)
 - https://github.com/intel/lp-opt-tool
- Reference Tool: TensorFlow Lite
 https://www.tensorflow.org/lite



Computational Evaluation

(of iLoT model)



• 1.8x speedup due to quantization

 Total speedup of 68 000x versus Monte Carlo

Model	Speedup vs Monte Carlo
float32	38 000x
int8	68 000x

 Reduction in model memory size of 2.26x

Model	Memory [MB]
float32	8.08
int8	3.57

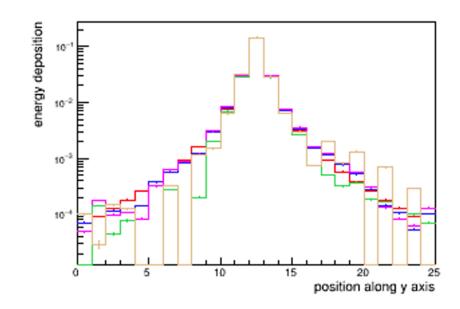
Physics Evaluation

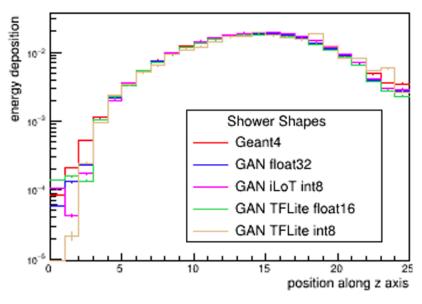
Shower Shapes

 Mean Squared Error (MSE) between GAN and validation data

Model	MSE (Lower is better)	+
float32	0.061	
iLoT int8	0.053	
TFLite float16	0.253	
TFLite int8	0.340	

- > iLoT shows a good accuracy
- > TensorFlow Lite performs worse





Summary

- 2.1x speed up with new Conv2D network
- Better physics accuracy with Conv2D network
- 1.8x speed up with quantized iLoT model + good accuracy

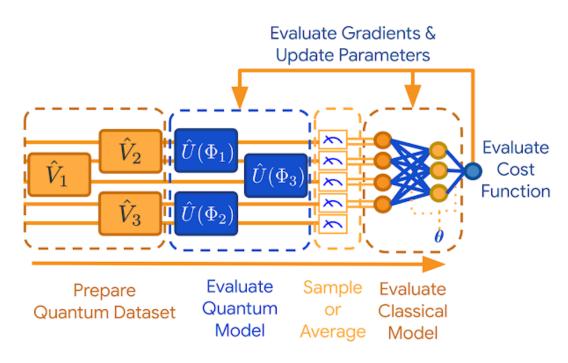
→ Total 68 000x speed up vs Monte Carlo

Future Work Quantum Computing

Quantum Computing

General Introduction

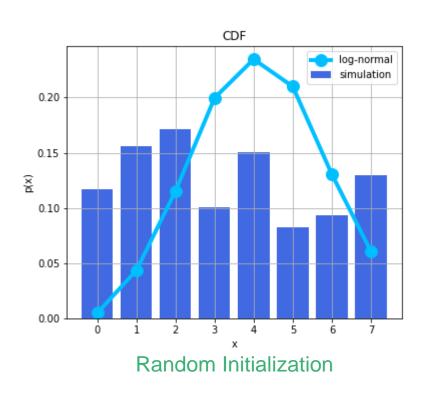
- Use of quantum mechanical properties
 - Entanglement
 - Superposition
- Hope to solve problems faster and / or more accurate
- "Quantum Advantage" not yet reached
 - We want to start initial tests
- Hybrid model:
 - quantum generator and classical discriminator

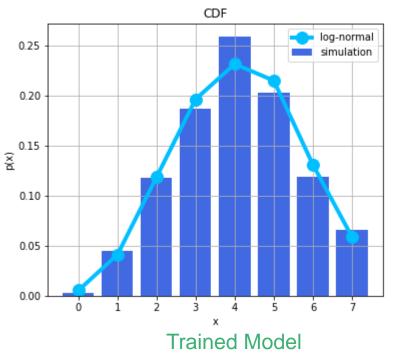


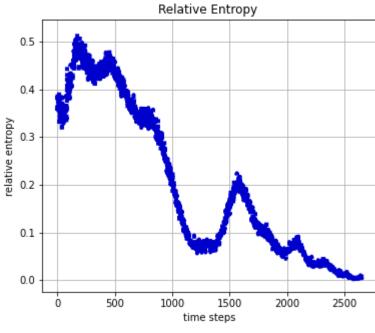
https://ai.googleblog.com/2020/03/announcing-tensorflow-quantum-open.html

Hybrid QGAN

First Test Results







"How similar the two distributions are"

Florian Rehm - DPG2021 15

QUESTIONS?

